
Bundeskommission Segelflug

- im Deutschen Aero Club e.V. -

WETTBEWERBSORDNUNG FÜR SEGELKUNSTFLUGMEISTERSCHAFTEN (SKWO)

ANLAGE A

- Bewertungskriterien für Segelkunstflugfiguren -

Ausgabe 2016

- Gültig ab 01. Januar 2016 -

Herausgeber: Bundeskommission Segelflug, Hermann-Blenk-Str. 28, 38108 Braunschweig

WETTBEWERBSORDNUNG FÜR SEGELKUNSTFLUGMEISTERSCHAFTEN (SKWO)

Anlage A Bewertungskriterien für Segelkunstflugfiguren

1 Begriffsbestimmungen

Folgende Begriffe werden in diesem Text durchgängig entsprechend den nachstehenden Definitionen verwendet:

1.1 Anstellwinkel

1.1.1 Der Winkel zwischen Profilsehne und Anströmrichtung.

1.2 Einstellwinkel

1.2.1 Der Winkel zwischen Profilsehne und Flugzeuglängsachse.

1.3 Figur

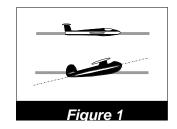
1.3.1 Jede einzelne Komponente eines Kunstflugprogramms, die eines oder mehrere Manöver in Kombination enthalten kann; sie beginnt und endet mit einer horizontalen Linie.

1.4 Manöver

1.4.1 Grundlegende Kunstflugbewegungen, welche zu einer Figur zusammengesetzt werden können (z.B. die Avalanche ist eine Figur, die aus zwei Manövern besteht – Loop und gerissener Rolle).

1.5 Note / Punkt / Wertung

1.5.1 Noten (von 0 bis 10) werden durch die Punktrichter vergeben, sie k\u00f6nnen um bestimmte Punkt
 - Werte reduziert werden. Die Wertung ergibt sich aus der Multiplikation der von den Punktrichtern gegebenen Noten mit den K-Faktoren und der Addition der Produkte.


1.6 Ebene

1.6.1 Im Wettbewerbskunstflug gibt es drei Ebenen in Bezug zum wirklichen Horizont: Horizontal, senkrecht und 45 Grad geneigt.

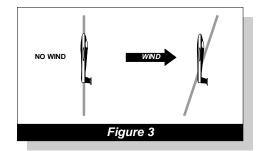
2 Flugbahn und Fluglage

2.1 Flugbahn

2.1.1 Man denke sich das Flugzeug als Punkt und verfolge die Bahn dieses Punktes durch die Luft. Das ist die Flugbahn oder die Bahn, die der Schwerpunkt des Flugzeugs beschreibt. Die Bewertung der Flugbahn erfolgt durch Vergleich der beobachteten Bahn mit festen Bezugslinien wie dem Horizont oder den X und Y Achsen des Kunstflugraums. (Abb. 1)

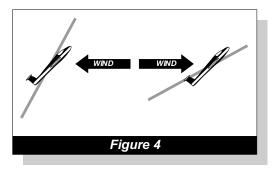
2.2 Die senkrechte Fluglage

- 2.2.1 Die Bewertung senkrechter Linien beruht auf der Fluglage des Flugzeugs und nicht seiner Flugbahn. Ist die Flugbahn eines Flugzeugs ohne Windeinfluss exakt senkrecht zum Horizont, haben die Flächen genau den Anstellwinkel, bei dem kein Auftrieb entsteht. Die Fluglage des Flugzeugs in diesem Zustand (Nullauftrieb) ist der genaue Bewertungsmaßstab für die senkrechte Fluglage. Diese Fluglage wird als Nullauftriebsachse bezeichnet.
 - a) Wenn die Nullauftriebsachse senkrecht steht, erscheint die Längsachse mancher Flugzeuge nicht senkrecht. (Abbildung 2) Dies gilt insbesondere für die meisten Segelflugzeuge, bei denen die Flächen mit einem Einstellwinkel von etlichen


Grad angebracht sind und die bei unsymmetrischem Flügelprofil einen negativen Anstellwinkel für Nullauftrieb benötigen. Der Punktrichter muß für jedes Flugzeug die der Nullauftriebsachse entsprechende Fluglage kennen. Die beste Gelegenheit dies zu bestimmen, ist die Beobachtung von Trainingsflügen, wobei die unterschiedlichen senkrechten Fluglagen der verschiedenen Segelflugzeuge sowohl aufwärts als auch abwärts zu beachten sind.

b) Eine Hilfe zum Beurteilen der perfekten senkrechten Fluglage (Nullauftrieb) ist die Beobachtung von senkrechten Rollen. Bei einer wirklich senkrechten Rolle sind die Flächen immer parallel zum Horizont was nach 90 Grad einer Rolle besonders deutlich wird.

c) Beachten sie auch, daß bei Flugzeugen, deren Nullauftriebsachse nicht mit der Längsachse zusammenfällt, in einer senkrechten Rolle das Leitwerk eine Spirale beschreibt. Das sieht dann


so aus, als ob das Heck des Flugzeugs von der Nullauftriebsachse abweichen würde.

d) Bei Wind wird die erkennbare Flugbahn immer um einige Grad von der Senkrechten abweichen. Dieser Windeinfluss darf vom Punktrichter keinesfalls beachtet werden; nur die Genauigkeit der senkrechten Fluglage ist zu bewerten. (Abbildung 3)

2.3 Die 45 Grad geneigte Fluglage

2.3.1 Hier haben wir es im Prinzip mit der senkrechten Fluglage plus oder minus 45° zu tun. Angesichts der Schwierigkeit, die 45° Linie genau zu erkennen, sollte man mit Punktabzügen vorsichtig umgehen. Bei Gegenwind erscheint die perfekte 45° Linie zu steil, das Gegenteil trifft bei Rückenwind zu. (Abb. 4) Wie bei der senkrechten Fluglage muß der Punktrichter diesen Windeinfluss völlig ignorieren. Nur die Genauigkeit der 45° Fluglage ist zu bewerten.

2.3.2 Segelflugzeuge nehmen auf Linien 45° abwärts Fahrt auf und verlieren Fahrt auf Linien 45° aufwärts. Wenn der Pilot die Nullauftriebsachse im vorgeschriebenen Winkel von 45° zum Horizont hält, wird die Flugbahn auf der Linie aufwärts flacher, wenn der Auftrieb mit abnehmender Fahrt geringer wird, ebenso wie auf der Linie abwärts, wenn der Auftrieb mit zunehmender Fahrt grösser wird. Diese Veränderungen des Flugbahnwinkels müssen ebenfalls bei der Bewertung von 45° Linien ignoriert werden. Der vorgeschriebene Abzug ist ein (1) Punkt pro fünf (5) Grad Abweichung von der korrekten Geometrie (0,5 Punkte pro 2,5 Grad) sowohl bei senkrechten als auch 45 Grad geneigten Linien.

3. Benotung

- 3.1.1 Es ist immer davon auszugehen, daß der Wettbewerber eine perfekte Figur fliegen wird, daher beginnt der Punktrichter mit der Note 10. Wird die Figur ausgeführt, erkennt der Punktrichter Fehler (sofern vorhanden) und beginnt Punkte abzuziehen während die Ausführung fortschreitet. Dieses Verfahren ist in den Regeln festgeschrieben, im Gegensatz zur Benotung nach Gesamteindruck nachdem die Figur fertig ist. Letztere Methode führt zu fehlerhafter und uneinheitlicher Benotung.
- 3.1.2 Falls ein Wettbewerber eine Figur so weit entfernt von den Punktrichtern fliegt, daß die Genauigkeit der Flugbahn oder Fluglage nicht ausreichend beurteilt werden können, ist für jedes Element der Figur, das nicht richtig bewertbar ist, ein Abzug von zwei (2) Punkten zu geben.

4 Box-Achsen

- 4.1.2 Eingangs- und Ausgangslinien aller Figuren müssen exakt entweder auf der X- oder Y-Achse ausgerichtet sein. Jede sichtbare Winklelabweichung muß mit einer Note Abzug pro fünf (5) Grad Fehler belegt werden.
 - a) Die X-Achse (oder Hauptachse) ist parallel zur Vorführachse. Jede Figur mit Eingangs- und Ausgangslinie auf der X-Achse muß so geflogen werden, wie auf den Formblättern B und C gezeichnet, in Richtung der oder gegen die Vorführachse, anderenfalls ist die Figur HZ zu werten.
 - b) Außer bei Figuren der Familien 2, 5 und 6: Ein Liniensegment, gerade oder als Loop, welches auf der X-Achse gezeichnet ist, muß in die Richtung geflogen werden, die auf dem Programmblatt B oder C angegeben ist, in Richtung der oder gegen die Vorführachse, anderenfalls ist die Figur HZ zu werten. (Abb. 5)
- 4.1.3 Die Y-Achse oder Querachse hat keine vorgeschriebene Richtung; d.h. der Pilot kann die Richtung frei wählen, wenn er von der X- auf die Y-Achse wechselt.
- 4.1.3 Figuren, deren Eingangs- und Ausgangslinien auf der Y-Achse liegen, müssen mit parallelen Eingangs- und Ausgangslinien gezeichnet sein.
- 4.1.4 Figuren mit Eingangs- und Ausgangslinie auf der Y-Achse müssen mit der Ausgangsrichtung relativ zur Eingangsrichtung so geflogen werden, wie auf den Formblättern B und C gezeichnet, d.h. in gleicher oder entgegengesetzter Richtung, anderenfalls ist die Figur HZ zu werten.

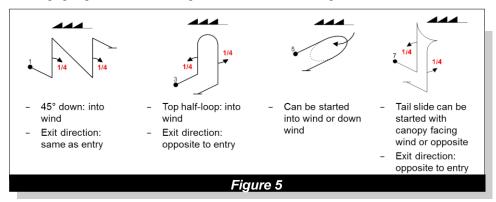
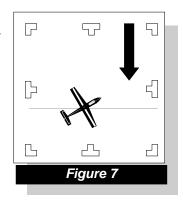
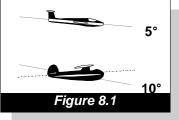



Figure 6

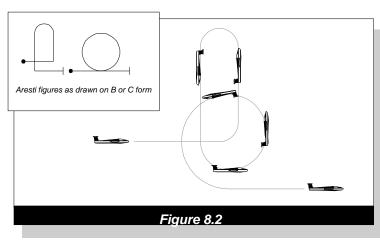
5 Windkorrektur

- 5.1.1 Es gibt zwei Arten von Windkorrekturen: Korrektur der Figurengeometrie und Korrektur der Positionierung in der Box. Der Wettbewerber muß alle Loops und Teil-Loops innerhalb einer Figur so fliegen, daß sie für den Punktrichter am Boden perfekt rund aussehen. Windkorrektur ist notwendig bei Loops und Teil-Loops in Figuren, damit der Flugweg einen Kreis oder Teilkreis mit konstantem Radius beschreibt. Merke: Als Punktrichter bewerten sie die Kreisform des Flugwegs. Jede Abweichung von der perfekten Kreisform muß zu einer Reduzierung der Note für die Figur führen.
- 5.1.2 Ebenso muß der Wettbewerber das Flugzeug in der Kunstflugbox halten. Dieses Problem vergrößert sich, wenn der Wind im Winkel zur X-Achse weht. (Abb. 6) Die bevorzugte Methode die Drift quer zur Box auszugleichen, ist der Einbau einer "Windkorrektur-Figur" in das Programm. Eine Windkorrektur-Figur bringt das Flugzeug auf die Y-Achse. Da die Richtung der Y-Achse nicht vorgeschrieben ist, kann der Wettbewerber in die Richtung auf der Y-Achse eindrehen, die eine Positionsänderung gegen den Wind bringt, bevor mit einer weiteren Figur das Flugzeug wieder zurück auf die X-Achse gebracht wird.

5.1.3 Eine gut entworfene Kür enthält mindestens eine, besser mehrere Windkorrektur-Figuren. Dagegen sind nicht in jedem bekannten oder unbekannten Pflichtprogramm genügend (wenn überhaupt) solche Figuren eingebaut. In diesem Fall ist es Sache des Wettbewerbers, das Flugzeug in der Box zu halten ohne die Hilfe einer eigenen Figur auf der Y-Achse. Eine gebräuchliche Methode ist das Vorhalten wie in der Navigation. (Abb. 7) Vorhalten bedeutet, daß die Richtung der Flugzeuglängsachse einen Winkel zur Vorführachse (X oder Y) bildet. Der Nachteil dieses Verfahrens liegt darin, daß der Punktrichter, wenn er diesen Winkel sehen kann, einen (1) Punkt pro fünf (5) Grad abziehen muß.

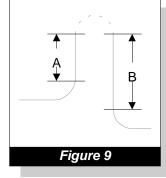


- 5.1.4 Der Wettbewerber kann aber auch den Seitenwind so kompensieren, daß die Fluglage absolut mit der korrekten Geometrie übereinstimmt, der Flugweg aber dennoch eine Seitwärtskomponente aufweist. Es würde den Rahmen dieses Dokuments sprengen, hier eine Anleitung zu geben, wie das bewerkstelligt wird. Aber eines muß klar sein, wenn ein Schiebewinkel oder eine Schräglage für den Punktrichter erkennbar sind, wird die Note jeweils um einen (1) Punkt pro fünf (5) Grad erkennbare Abweichung reduziert.
- 5.1.5 Bitte beachten sie aber: Selbst wenn es offensichtlich ist, daß sich das Flugzeug quer zur Achse der Box bewegt hat, ist kein Punktabzug zu geben, wenn der Punktrichter die Technik dieser Seitwärtsbewegung nicht erkennen kann.

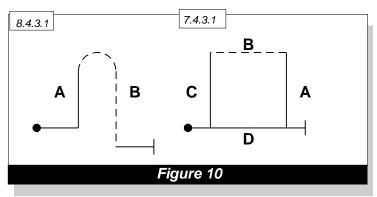

6 Grundelemente der Geometrie: Linien und Loops

6.1 Linien

6.1.1 Alle Linien werden im Bezug zum wahren Horizont und den Achsen der Box bewertet. Horizontale Linien sind nur nach der Flugbahn zu bewerten. Verschiedene Flugzeuge nehmen bei unterschiedlichen Geschwindigkeiten völlig verschiedene Fluglagen ein um auf einer horizontalen Flugbahn zu bleiben. (siehe Abb. 8.1)

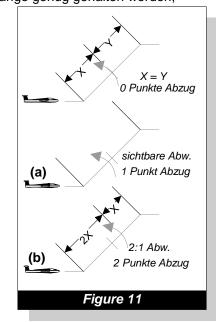


- 6.1.2 Segelflugzeuge können keine horizontale Flugbahn einhalten ohne Fahrt zu verlieren. Um eine bestimmte Fahrt zu halten, muß die Flugbahn geneigt sein. Der Gleitwinkel bei konstanter Geschwindigkeit ist eine Funktion der Gleitzahl des betreffenden Segelflugzeugs bei dieser Fahrt. (Abb. 8.1) Daher kann, abhängig von Flugzeugtyp und Fluggeschwindigkeit, der Gleitwinkel erheblich variieren.
- 6.1.3 Aus diesem Grund darf im Segelkunstflug die Flugbahn auf horizontalen Linien zwischen null (0) und zehn (10) Grad unter dem Horizont geneigt sein. Abweichungen von dieser Spanne nach oben oder unten werden mit einem (1) Punkt pro fünf (5) Grad abgewertet.
- 6.1.4 Auf einer horizontalen Linie muß die Flugrichtung parallel zur X oder Y Achse der Box bleiben.
 - Der Punktabzug für Abweichungen ist ein (1) Punkt pro fünf (5) Grad von der korrekten Geometrie.
- 6.1.5 Alle Figuren beginnen und enden mit jeweils einer horizontalen Linie und beide müssen vorhanden sein, um eine gute Note für die Figur zu bekommen. Ein Wettbewerber, der eine Figur an die nächste anhängt ohne diese deutlich erkennbaren horizontalen Linien zu zeigen, bekommt für jede fehlende Linie in jeder betroffenen Figur einen (1)



Punkt abgezogen. Wird die Linie zwischen zwei Figuren weggelassen, ist daher bei der vorhergehenden ebenso wie der nachfolgenden Figur je eine (1) Note abzuziehen. (Abb. 8.2)

6.1.6 Bei allen Linien innerhalb einer Figur kommt vorher und danach je ein Teil-Loop. Die absolute Länge der Linien innerhalb einer Figur ist für sich kein Bewertungskriterium. (Abb. 9) Die entsprechende Fluglage muß jedoch lang genug eingehalten werden um den Punktrichtern die Bewertung des Winkels zu ermöglichen und Abweichungen von der vorgeschriebenen Ebene erkennbar zu machen.

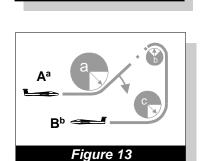

- 6.1.7 Übermäßig lange Linien dürfen nicht mit höheren Noten belohnt werden und "harter" Flugstil mit rechtwinkligen "Ecken" und hohen Lastvielfachen ist mit einer reduzierten Harmonienote zu ahnden.
- 6.1.8 Mit Ausnahme der Figurenfamilie 3
 und einiger Figuren in Familie 7
 brauchen die Linien innerhalb einer
 Figur nicht gleich lang zu sein. Deshalb müssen die Punktrichter mit
 den Kriterien für die Länge der Linien bei jeder Figur vertraut sein.
 Zum Beispiel brauchen die Linien in
 einem Humpty nicht gleich lang zu
 sein während alle vier Linien eines
 quadratischen Loops selbstverständlich gleich lang sein müssen. (Abb. 10)

- 6.1.9 Wird eine gesteuerte oder Zeitenrolle auf einer Linie innerhalb einer Figur geflogen, müssen die Linienteile vor und nach der Rolle gleich lang sein. Bei Segelflugzeugen liegen die Eingangsgeschwindigkeiten für gerissene und gestoßene Rollen in einer relativ schmalen Spanne. Der Pilot muß daher den Punkt auf der Linie frei wählen können, an dem er die Rolle einleitet. Deshalb ist kein Punktabzug zu geben, wenn gerissene oder gestoßene Rollen nicht mittig auf inneren Linien geflogen werden.
- 6.1.10 Einige Segelflugzeuge haben vergleichsweise langsame Rollraten und brauchen praktisch die gesamte Länge einer inneren Linie um eine gesteuerte oder Zeitenrolle auszuführen. Deshalb reicht es aus, wenn senkrechte oder 45° geneigte Linien gerade lange genug gehalten werden,

um zu zeigen, daß der vorhergehende Teil-Loop beendet und die vorgeschriebene Flugebene eingenommen ist. Die absoluten Längen der Linien vor und nach einer Rolle sind für die Bewertung irrelevant, solange sie gleich sind.

- 6.1.11 Punktrichter müssen darauf achten, daß sie bei der Bewertung der Symmetrie von Linien nur die Strecke und nicht die Zeitdauer berücksichtigen, die zum Fliegen eines bestimmten Abschnitts benötigt wurde. Der Unterschied zwischen Strecke und Flugzeit ist besonders deutlich bei Rollen auf steigenden Linien. Da das Flugzeug Fahrt verliert, wird die Zeit zum Fliegen einer bestimmten Strecke nach der Rolle wesentlich länger als vor der Rolle.
- 6.1.12Wenn zwei oder mehr Linien innerhalb einer Figur die gleiche Länge haben müssen, wird für eine erkennbare Abweichung die Note nach folgendem Schema reduziert: (Abb. 11)
 - a) Eine sichtbare Abweichung ein (1) Punkt Abzug.
 - b) Wenn die Längen um 2:1 oder mehr abweichen zwei (2) Punkte Abzug

- 6.1.13 Ausgangspunkt für die Bewertung der Linienlänge ist die erste geflogene Linie. Fehlt eine der Linien vor oder nach der Rolle, wird das mit einem (1) zusätzlichen Punkt Abzug belegt.
 - Beispiel: Der Wettbewerber soll eine 45 Grad steigende Linie mit einer halben Rolle zeigen. Obwohl vor der Rolle eine Linie zu sehen war, wurde das Segelflugzeug sofort nach der Rolle in den Horizontalflug gebracht.
 - Der korrekte Abzug ist drei (3) Punkte: Zwei (2) Punkte werden abgezogen, weil die Linienlängen um mehr als 2:1 unterschiedlich sind; ein weiterer Punkt ist abzuziehen, weil eine der Linien komplett fehlt.
- 6.1.14 Allen 90 Grad und 45 Grad Linien geht ein Teil-Loop voraus. Wenn das Segelflugzeug den Teil-Loop beendet und die vorgeschriebene Flugebene erreicht, muß der Pilot den Anstellwinkel verkleinern, um die 45 Grad oder 90 Grad-Fluglage beizubehalten. Zur Bewertung hat der Punktrichter lediglich auf die korrekte Ausrichtung der Nullauftriebsachse 45 Grad oder 90 Grad zum Horizont zu achten, sobald der Teil-Loop beendet ist.
- 6.1.15 Manche Piloten übertreiben die Anstellwinkeländerung beim Übergang vom Loop zur Linie. Sie überschießen den korrekten Winkel um einige Grad und stoßen die Flugzeugnase auf die Linie zurück. Dieses "Einrasten" ist mit einem (1) Punkt Abzug pro fünf (5) Grad zu ahnden (siehe auch Ziff. 7.11.4).

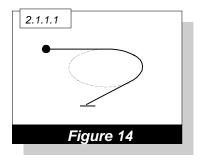

6.2 Loops und Teil-Loops

- 6.2.1 Jeder Übergang von einer Flugebene zur einer anderen soll einen sinnvollen und konstanten Radius aufweisen. Die Größe dieses Radius ist kein Bewertungskriterium; "Ecken" mit unnötig hoher Querbeschleunigung dürfen nicht höher bewertet werden. Wenn es in einem Loop oder Teil-Loop zu einem Strömungsabriss kommt, ist die Figur mit Perception Zero (PZ) zu bewerten.
- 6.2.2 Der Loop gehört zur Familie 7 aber Teil-Loops sind integraler Bestandteil fast jeder anderen Familie, daher ist es nötig, hier einige Schlüsselbegriffe zu definieren, bevor andere Familien besprochen werden.
 - a) Ein Loop muß kreisförmig sein und daher einen konstanten Radius haben. Er beginnt und endet auf einer definierten Linie, welche für einen ganzen Loop eine Horizontale ist. Bei einem Teil-Loop können die Ein- und Ausgangslinien in jeder anderen Ebene sein und sind dann durch die Fluglage definiert. Wenn sich die Geschwindigkeit während der Ausführung eines Loops oder Teil-Loops ändert, muß sich auch die Winkelgeschwindigkeit um die Querachse des Flugzeugs ändern, um den Radius konstant zu halten. So kann die Winkelgeschwindigkeit eine Hilfe sein, um den konstanten Radius zu prüfen, insbesondere wenn die Winkelgeschwindigkeit im oberen Teil eines Loops schneller erscheint, was ein klares Anzeichen ist, daß der Radius kleiner ist. Diese Hilfe wird umso wichtiger, wenn zwei Teil-Loops durch eine Linie getrennt sind.
 - b) Teil-Loops k\u00f6nnen entweder als Kreisb\u00f6gen oder als "Ecken" gezeichnet sein. Es ist wichtig, da\u00db jede Ecke im Figurensymbol (siehe Abb. 12) als ein Teil-Loop zu fliegen ist und einen gleichm\u00e4\u00dbjen, konstanten und definierten Radius haben mu\u00db.
 - c) In einer Figur, bei der mehrere Teil-Loops als Kreisbögen gezeichnet sind, müssen alle diese Teil-Loops den selben Radius haben – mit Ausnahme der Figuren der Familie 8.8 (Doppel-Humpties) bei denen der Radius des zweiten Halbloops nicht mit dem des ersten gleich sein muß.
 - d) Der Radius eines Teil-Loops der als Ecke gezeichnet ist, braucht nicht mit dem irgend eines Teil-Loops in der selben Figur übereinzustimmen mit Ausnahme der Familien 3 (Kombinationen von Linien) und 7.4 (ganze Loops), welche eine regelmäßige geometrische Form haben, und bei denen daher alle Teil-Loops den gleichen Radius aufweisen müssen.

7 Familien des Aresti Systems

7.1 Familie 1 – Linien und Winkel

7.1.1 Familie 1.1.1 bis 1.1.7 wurde bereits im vorhergehenden Abschnitt umfassend abgehandelt. Bitte beachten, daß die Figuren der Familien 1.2.1 bis 1.3.8 NICHT so geflogen werden, wie sie im Aresti Katalog gezeichnet sind. (Abb. 12) In jeder dieser Figuren gibt es drei (vier in 1.3.1 - 1.3.8) Loop-Elemente: z.B. ein achtel Loop, ein drei-achtel Loop und ein viertel Loop. Rollen können auf der 45 Grad Linie und/oder der 90 Grad Linie geflogen werden, wobei die Linienteile vor und nach den Rollen gleich lang sein müssen (außer bei gerissenen und gestoßenen Rollen sowie Rollen, die auf ein Trudeln folgen).


Fiaure 12

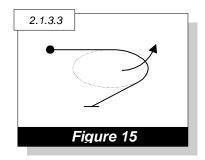
1.2.3.1 + 9.1.2.2

- 7.1.2 Die horizontale Eingangslinie und die Linie am Ende der Figur können in unterschiedlichen Höhen geflogen werden.
- 7.1.3 (Abb. 13) Familie 1.2.2 oder 1.2.3 praktisch geflogen. Die Radien a, b, und c können alle unterschiedlich sein und die Eingangshöhe "A" kann verschieden von der Ausgangshöhe "B" sein.

7.2 Familie 2.1.1, 2.2.1, 2.3.1 und 2.4.1 – Kreise und Kurven

- 7.2.1 Kreise und Kurven im Wettbewerbskunstflug dürfen nicht mit normalen koordinierten Kurven verwechselt werden.(Abb. 14) Eine Kurve im Wettbewerbskunstflug besteht aus drei Teilen:
 - a) Einnehmen der Querlage mittels einer Rolle in der Eingangsrichtung,
 - b) die eigentliche Kurve und
 - eine Rolle zurück in Normallage in der abschließenden Flugrichtung.

- 7.2.2 Zuerst die Rolle in die vorgeschriebene Querlage: Dieses muß eine Rolle von 60 Grad sein, die in der Eingangsrichtung auszuführen ist, wobei das Segelflugzeug einen konstanten Gleitflug einhält (0 bis 10 Grad unter dem Horizont).
- 7.2.3 Sobald die Rolle abgeschlossen und die Querlage von 60° erreicht ist, hat der Pilot die Kurve auszuführen. In der Kurve sind exakt 60° Querlage einzuhalten. Das Segelflugzeug muß ebenfalls einen konstanten Gleitflug (0 bis 10 Grad unter dem Horizont) einhalten. Die Drehgeschwindigkeit bleibt konstant und unterliegt keiner Windkorrektur. Deshalb wird eine unter Windeinfluss geflogene Kurve nicht als perfekter Kreis oder Kreisbogen erscheinen.
- 7.2.4 Sobald das Segelflugzeug die abschließende Richtung erreicht, führt der Pilot eine weitere Rolle mit gleicher Rollrate wie die Eingangsrolle aus. Wiederum muß das Segelflugzeug einen konstanten Gleitflug (0 bis 10 Grad unter dem Horizont) beibehalten.

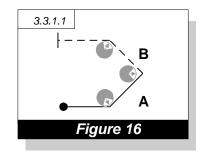

7.2.5 Punktabzüge:

- a) Die Querlage, die mit dem ersten Rollmanöver einzunehmen ist, muß exakt 60° betragen. Jede Abweichung ist ein (1) Punkt Abzug pro fünf (5) Grad.
- b) Die eingenommene Querlage muß konstant bleiben. Abweichungen bedeuten ein (1) Punkt Abzug pro fünf (5) Grad.
- c) Die Rollrate zum Einleiten der Kurve und zum Ausleiten muß gleich sein. Jede erkennbare Abweichung ergibt einen (1) Punkt Abzug.

- d) Das Segelflugzeug muß einen konstanten Gleitflug (0 bis 10 Grad unter dem Horizont) während der gesamten Figur beibehalten. Jede Abweichung nach oben oder unten ergibt einen (1) Punkt Abzug pro fünf (5) Grad.
- e) Die Drehgeschwindigkeit muß konstant bleiben. Änderungen ergeben höchstens einen (1) Punkt Abzug pro erkennbarer Variation. Beachten sie jedoch, daß die Drehgeschwindigkeit unter Windeinfluss anscheinend variiert, obwohl sie in Wirklichkeit konstant ist. Der Punktrichter muß stets den Wind beachten und im Zweifelsfall zugunsten des Piloten entscheiden.
- f) Das Segelflugzeug muß zu Beginn und am Ende der Kurve in der vorgeschriebenen Flugrichtung sein. Abweichungen ergeben je einen (1) Punkt Abzug pro fünf (5) Grad.

7.3 Familie 2.1.2, 2.1.3, 2.2.2 - 2.2.6, 2.3.2 - 2.3.5 und 2.4.2 - 2.4.8 -Rollenkurven

- 7.3.1 Die Rollenkurve ist eine Figur, die eine oder mehrere Rollen in eine Kurve mit bestimmter Richtungsänderung integriert.(Abb. 15)
- 7.3.2 Die Rollen k\u00f6nnen in die gleiche Richtung wie die Kurve (Rollen einw\u00e4rts) oder entgegengesetzt (Rollen ausw\u00e4rts) geflogen werden.
- 7.3.3 Die Aussage "die Rollen sind integriert" bedeutet, zusätzlich zur konstanten Drehgeschwindigkeit der Kurve müssen die Rollen synchron mit der Kurve geflogen werden.

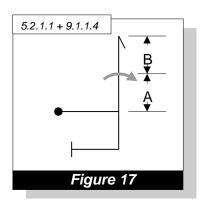

- 7.3.4 Zum Beispiel: In einem 180° Rollenkreis mit zwei Rollen aus Normallage (Katalog Nr. 2.2.5.1 oder 2.2.5.3) soll das Segelflugzeug nach 45° und 135° Drehung in Rückenlage und nach 90° und 180° in Normallage sein. Diese Winkelangaben sind an sich kein Bewertungsmaßstab, sondern sollen lediglich als Anhalt zur Beurteilung der gleichmäßigen Roll- und Drehrate dienen.
- 7.3.5 Am Ende der Figur muß sich das Segelflugzeug in Normal oder Rückenlage in der vorgeschriebenen Flugrichtung befinden.
- 7.3.6 Wenn ein Rollenkreis mit Rollen in wechselnder Richtung geflogen wird, muß die Rollrichtung in Normal- oder Rückenlage geändert werden, wobei die Kurve fortgesetzt wird. Beim Wechsel der Rollrichtung darf es keine erkennbare Pause in der Rollbewegung geben.

7.3.7 Punktabzüge:

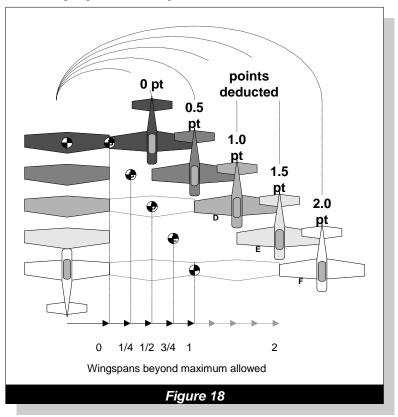
- a) Werden mehr oder weniger Rollen geflogen als im Katalog für die Figur vorgeschrieben, ist die Figur mit HZ zu werten.
- b) Alle Rollen in einem Rollenkreis sind gesteuerte Rollen. Wird nach Ansicht eines Punktrichters eine gerissene oder gestoßene Rolle geflogen oder ist ein Strömungsabriss zu erkennen, ist die Figur Perception Zero (PZ).
- c) Jede sichtbare Änderung sowohl der Rollrate als auch der Drehrate bedeutet einen Abzug von nicht mehr als einem (1) Punkt.
- d) Jedes Anhalten der Rolle oder der Kurve bedeutet einen Abzug von nicht mehr als zwei (2) Punkten.
- e) Eine erkennbare Pause beim Wechsel der Rollrichtung bedeutet einen (1) Punkt Abzug.
- f) Abweichungen vom konstanten Gleitwinkel (0 bis 10 Grad unter dem Horizont) ergeben einen (1) Punkt Abzug pro fünf (5) Grad.
- g) Ein (1) Punkt Abzug pro fünf (5) Grad Querneigung beim Wechsel der Rollrichtung.
- h) Ein (1) Punkt Abzug pro fünf (5) Grad fehlender Rolle, wenn das Flugzeug die Ausgangsrichtung erreicht hat.
- i) Ein (1) Punkt Abzug pro fünf (5) Grad fehlender Kurve, wenn das Flugzeug die letzte Rolle beendet hat.

7.4 Familie 3 – Kombinationen von Linien

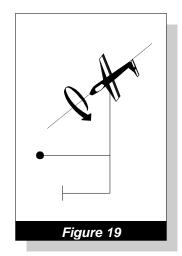
7.4.1 Der Übergang vom Horizontalflug zur 45 Grad Linie sollte ein 1/8-Loop mit angemessenem und konstantem Radius sein.
Alle Linien innerhalb der Figur müssen gleich lang sein. Alle Teil-Loops müssen den selben Radius haben. (in Abb. 16: Radien a = b = c)



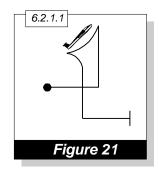
7.5 Familie 5 - Turns

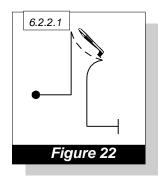

7.5.1 Turns gehören zu den elegantesten Figuren im Aresti System. In der Grundform beginnt die Figur mit einem viertel Loop in den senkrechten Steigflug. Im Scheitelpunkt der senkrechten Linie dreht das Segelflugzeug in den senkrechten Abstieg. Die Figur endet mit einem viertel Loop aus der Senkrechten in den Horizontalflug.

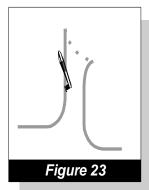
7.5.2 Die Bewertungskriterien sind:


- a) Die senkrechten Linien aufwärts und abwärts sind auf der Nullauftriebsachse zu fliegen.
 (siehe Abb. 2)
- b) Jede Abweichung von der Senkrechten, aufwärts oder abwärts, ergibt einen (1) Punkt Abzug pro fünf (5) Grad von der Nullauftriebsachse.
- c) Rollen können im senkrechten Aufstieg oder Abstieg geflogen werden, wobei die Linien vor und nach der Rolle gleich lang sein müssen (außer bei gerissenen oder gestoßenen Rollen). (Abb. 17) Punktabzüge siehe Ziff. 6.1.12 und 6.1.13.

- d) Die Länge der senkrechten Linien aufwärts und abwärts braucht nicht gleich zu sein, somit können die Eingangshöhe und die Ausgangshöhe der Figur unterschiedlich sein.
- e) Während des senkrechten Aufstiegs und Abstiegs müssen die Flächen parallel zum Horizont bleiben. Wenn die Verbindungslinie zwischen beiden Flügelenden von der Horizontalen abweicht, ist ein (1) Punkt pro fünf (5) Grad abzuziehen.
- 7.5.3 Wenn das Segelflugzeug den Punkt erreicht, an dem der Anstieg endet, muß es in einer senkrechte Ebene drehen ("fächern"). Um Abzüge zu vermeiden, muß der Drehpunkt nicht weiter vom Schwerpunkt entfernt sein als die halbe Spannweite. Ist der Radius der Drehung (Fächerung) grösser, ist pro halber Spannweite ein (1) Punkt abzuziehen. (Abb. 18)



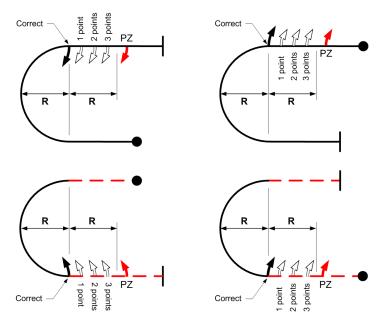

- 7.5.4 Die Drehgeschwindigkeit um die Hochachse ist kein Bewertungskriterium. Rutscht das Segelflugzeug jedoch in der Fächerung seitwärts ab, so muß dafür mindestens ein (1) Punkt, abhängig von der Schwere des Fehlers abgezogen werden.
- 7.5.5 Während der gesamten Fächerung müssen die Flächen in einer senkrechten Ebene bleiben und die Fluglage muß vor und nach der Fächerung einwandfrei senkrecht sein. Es darf dabei keine Drehung um die Längs- oder Querachse geben. Falls eine Drehung um eine andere Achse als die Hochachse erkennbar ist (Abb. 19), wird ein (1) Punkt pro fünf (5) Grad Abweichung abgezogen.



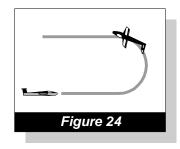
7.6 Familie 6 – Männchen

- 7.6.1 Sämtliche Kriterien für den Turn gelten auch für diese Figuren, außer selbstverständlich das Manöver im Scheitelpunkt des senkrechten Anstiegs. Am Punkt, wo das Segelflugzeug zum Stillstand kommt, muß es sichtbar rückwärts rutschen (das Schlüsselwort ist "sichtbar"). Ohne Rückwärtsrutschen ist die Note Perception Zero (PZ).
- 7.6.2 Nach dem Rückwärtsrutschen muß das Segelflugzeug in den senkrechten Abstieg umklappen. Das Umklappen darf nur um die Querachse erfolgen. Jegliche Drehung um eine andere Achse ist mit Abzug von einem (1) Punkt pro fünf (5) Grad zu belegen.
- 7.6.3 Nach dem Umklappen pendelt das Segelflugzeug oft um die Querachse. Die Figur darf deshalb nicht abgewertet werden, ebenso wenig, wenn das Pendeln nicht auftritt. Es ist abhängig von der Länge des Durchrutschens und vom Flugzeugtyp und stellt kein Bewertungskriterium dar.
- 7.6.4 Es gibt zwei Typen von Männchen: Männchen vorwärts und Männchen rückwärts ("Weibchen"). Das Männchen vorwärts hat im Aresti-Symbol einen durchgezogenen Bogen (Abb. 21); beim Männchen rückwärts ist es ein gestrichelter Bogen (Abb. 22).
- 7.6.5 Die Figur muß genau beobachtet werden, da das Männchen nach der falschen Seite fallen kann (was mit HZ zu werten ist), obwohl Flugrichtung und Fluglage korrekt sind.
- 7.6.6 Besonderes Augenmerk ist auf das "Schummeln" unmittelbar vor dem Scheitelpunkt zu richten. (Abb. 23) Die viertel Loops im Eingang und Ausgang der Figur sind mit angemessenem und konstantem Radius zu fliegen. Eingangs- und Ausgangshöhe brauchen nicht gleich zu sein.
- 7.6.7 Werden Rollen mit dem Männchen kombiniert, so sind gleichlange Linien vor und nach den Rollen gefordert (außer bei gerissenen und gestoßenen Rollen). Im senkrechten Abstieg muß das Segelflugzeug die senkrechte Fluglage eingenommen haben, bevor die Rolle begonnen wird.
- 7.6.8 Zusammengefasst soll das Flugzeug einen weichen und gleichmäßigen Übergang in die Senkrechte zeigen, die Flächen sollen parallel zum Horizont bleiben und das Flugzeug soll in dieser Lage zu einem völligen Stop kommen. Nachdem es eine sichtbare Strecke rückwärts gerutscht ist, soll es in die korrekte Richtung umklappen,

ohne eine Fläche fallen zu lassen oder mit der Schnauze aus der Richtung zu drehen. Nach Beendigung des Umklappens soll es wieder eine Senkrechte abwärts zeigen, bevor es mit einem viertel Loop mit angemessenem und konstantem Radius in den Horizontalflug übergeht.

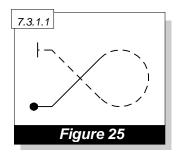

7.7 Familie 7 - Loops und Achten

7.7.1 Die Größe eines Loops ist kein Bewertungskriterium. Sie ist unterschiedlich, je nach den Flugleistungen des jeweiligen Flugzeugs. Ein großer Loop ist nicht höher oder niedriger als ein kleiner Loop zu bewerten. Dagegen ist jede Abweichung vom konstanten Radius abzuwerten.

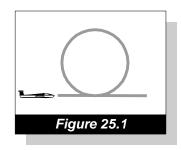

7.8 Familie 7.2 – Halbe Loops mit Rolle

- 7.8.1 Die halben Loops dieser Unterfamilie müssen einen konstanten Radius haben und windkorrigiert sein, um als vollkommen runde Halbkreise zu erscheinen. (siehe nachfolgende Anmerkungen zu ganzen Loops)
- 7.8.2 Wenn vor oder nach dem halben Loop eine Rolle oder Rollen kommen, müssen die beiden Figurenelemente ohne erkennbare Linie dazwischen geflogen werden. Wird eine Linie gezeigt, ergibt das einen Abzug, der von der Länge der Linie abhängt. Der Abzug wird bestimmt durch Vergleich der Länge der Linie mit dem Radius des Loops:
 - Ein Punkt für eine kurze, aber sichtbare Linie;
 - Zwei Punkte für eine deutliche Linie bis zur halben Länge des Loop-Radius;
 - Drei Punkte für eine lange Linie bis zur vollen Länge des Loop-Radius.

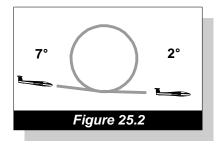
Wenn die Länge der Linie größer ist als der Loop-Radius, ist die Figur mit Perception Zero (PZ) zu benoten.



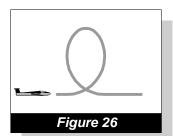
7.8.3 Falls der halbe Loop beginnt, bevor die Rolle beendet ist oder die Rolle beginnt, bevor der halbe Loop abgeschlossen ist, muß für je fünf (5) Grad des Loops auf denen gerollt wurde ein (1) Punkt abgezogen werden. (Abb. 24)

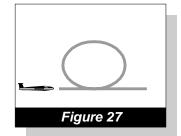

7.9 Familie 7.3 - Dreiviertel Loops

7.9.1 Auch als "Goldfisch" bezeichnet. Keiner der Teil-Loops braucht den selben Radius zu haben. Die 45 Grad Linien werden nach der Fluglage (Nullauftriebsachse) bewertet und nicht nach der Flugbahn. Rollen auf den 45 Grad Linien, mit Ausnahme von gerissenen oder gestoßenen Rollen, müssen auf der Linie zentriert sein. Die Längen der 45 Grad-Linien können verschieden sein. Eingangs- und Ausgangshöhe sind unabhängig von der unteren oder oberen Begrenzung des Loops. (Abb. 25)

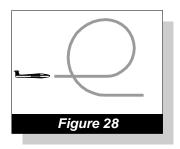


7.10 Familie 7.4.1 und 7.4.2 – Runde Loops


7.10.1 Alle ganzen Loops müssen aus Sicht des Punktrichters vollkommen rund aussehen. Das bedeutet, daß sie windkorrigiert sein müssen, um einen konstanten Radius zu haben. Die Windkorrektur bezieht sich nur auf die Rundung des Loops und nicht auf Seitenwindeffekt. Daher wird kein Abzug gegeben, wenn der Endpunkt des Loops in Bezug zum Anfang quer zur Ebene des Loops versetzt ist. Ganze Loops müssen in der selben Höhe beginnen und enden. (Abb. 25.1)


7.10.2 Im Segelkunstflug können die Eingangs- und Ausgangslinien eines Loops 0 bis 10 Grad unter dem Horizont geneigt sein und die Neigung kann für die Eingangs- und Ausgangslinie innerhalb der oben angegebenen Toleranzen verschieden sein. (Abb. 25.2)

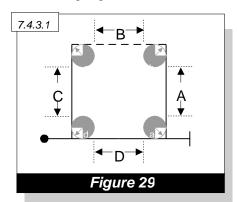
- 7.10.3 Loops müssen ohne erkennbare Schiebebewegung geflogen werden und die Flächen haben stets waagerecht zu sein. Die ein (1) Punkt pro fünf (5) Grad-Regel gilt auch hier.
- 7.10.4 Wird eine Rolle im Scheitelpunkt des Loops geflogen, muß sie zentriert sein und auf dem Loop-Bogen geflogen werden. Wird die Rolle stattdessen auf einer Linie geflogen, ist das mit einem Abzug von mindestens zwei (2) Punkten zu belegen. Ist die Rolle nicht zentriert, werden je ein (1) Punkt pro fünf (5) Grad Abweichung auf dem Bogen abgezogen.
- 7.10.5 Um die Abzüge für Unregelmäßigkeiten im Radius besser quantifizieren zu können, sollte der Loop in Quadranten aufgeteilt werden. Jede Variation im Radius von einem Quadranten zum nächsten kann dann, je nach Größe der Abweichung, mit einem bestimmten Punktabzug belegt werden. Jeder Punktrichter sollte eine nachvollziehbare Methode entwickeln, mit der er jeden Loop nach den selben Kriterien bewertet.



7.10.6 Zuerst die klassische "Zwetschge" (Abb. 26): Hier wurde die Winkelgeschwindigkeit bei abnehmender Fahrt im oberen Teil nicht genügend reduziert. Auch bei nicht ausreichender Rückenwindkorrektur entsteht dieses Bild.

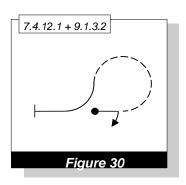
7.10.7 Ein zu flacher Loop (Abb. 27) ist relativ selten zu sehen. Dieses Bild entsteht, wenn der Pilot im Scheitelpunkt den Höhenruderdruck zu sehr nachlässt und damit die Winkelgeschwindigkeit zu stark reduziert. Auch eine nicht ausreichende Korrektur bei starkem Gegenwind führt zu diesem Fehler.

7.10.8 Häufig wird im dritten und vierten Quadranten der Höhenruderdruck zu viel zurückgenommen, wobei ein e - förmiger Loop (Abb. 28) entsteht. Bei allen diesen Fehlern ergibt ein Vergleich der unterschiedlichen Radien in den vier Quadranten eine zuverlässige Grundlage für die Bewertung.



7.11 Familie 7.4.3 - 7.4.6 - Quadratische, rautenförmige und achteckige Loops

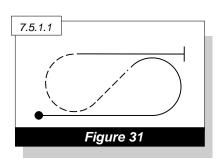
7.11.1 Diese Figuren müssen durchweg sowohl gleich lange Linien als auch Teil-Loops mit gleichen Radien aufweisen. Horizontale Linien sind nach der Flugbahn zu bewerten (0 bis 10 Grad unter dem Horizont); vertikale und 45 Grad Linien anhand der Fluglage (Nullauftriebsachse). Diese Loops unterliegen stets dem Windeinfluss. Somit ergibt sich, außer bei völliger Windstille, niemals eine in sich geschlossene Figur. Quadratische und Achteck-Loops sind erst beendet, wenn die letzte horizontale Linie gleich lang wie die erste Linie der Figur gezeichnet ist.

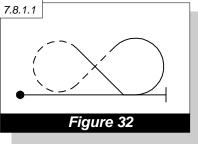

Abb. 29:

- a) Radien a = b = c = d
- b) Linienlängen A = B = C = D
- c) Die Figur ist erst fertig wenn D = A
- 7.11.3 Werden Rollen in eckigen Loops geflogen, müssen sie auf der jeweiligen Linie zentriert sein (außer gerissene oder gestoßene Rollen).
- 7.11.4 Ein häufiger Fehler bei diesen Figuren ist das Überschießen der Linie nach einem Teil-Loop mit nachfolgendem "Stoßen" der Flugzeugnase auf die korrekte Linie. (siehe Ziff. 6.1.15) Jedes derartige "Einrasten" ist mit einem (1) Punkt Abzug pro fünf (5) Grad zu belegen.

7.12 Familie 7.4.7 - 7.4.14 – Ganze Loops mit Richtungsumkehr

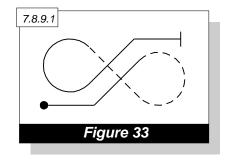
- 7.12.1 (Abb. 30) Die Bewertungskriterien hinsichtlich der Rundung sind die selben, wie für runde Loops. (siehe Abs. 7.10) Der Umkehr-Loop muß windkorrigiert sein und alle Teil-Loops müssen den selben Radius haben.
- 7.12.2 Der Umkehr-Loop muß als durchgehende Rundung geflogen werden, ohne Linie an der Stelle, wo der Anstellwinkel wechselt. Ist eine Linie zwischen den Teil-Loops erkenbar, ist das ein Abzug von mindestens zwei (2) Noten, abhängig von der Länge der Linie.


7.12.3 Die Kriterien für Rollen auf den Eingangs- und Ausgangslinien sind die selben, wie für halbe Loops. (siehe Abs. 7.8) Für Rollen im Scheitelpunkt der Loop-Segmente gelten die selben Kriterien wie für runde Loops. (siehe 7.10.4)


7.13 Familie 7.5.1 - 7.5.8 – Horizontale Figur "S"

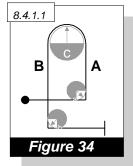
7.13.1 (Abb. 31) Beide Loop-Segmente müssen den gleichen Radius haben. Für Rollen auf den Eingangs- und Ausgangslinien gelten die Kriterien der Familie 7.2. (Halbe Loops mit Rollen) Rollen auf den internen 45 Grad-Linien müssen zentriert sein, mit Ausnahme von gerissenen oder gestoßenen Rollen.

7.14 Familie 7.8.1 - 7.8.8 - Kubanische Achten


- 7.14.1 (Abb. 32) Der 5/8 und der 3/4 Loop müssen den selben Radius haben, aber der 1/8 Loop zwischen der 45 Grad Linie und der Horizontalen braucht nicht gleich gross wie die anderen Teil-Loops zu sein. Die Linien zwischen den Loops sind mit exakt 45 Grad Fluglage zu fliegen. Rollen auf diesen Linien, mit Ausnahme von gerissenen oder gestoßenen Rollen, müssen zentriert sein.
- 7.14.2 Eingangs- und Ausgangslinien der Loops sowie die Unteroder Obergrenzen brauchen nicht gleich hoch zu sein. Für
 Rollen auf den horizontalen Eingangs- oder Ausgangslinien vor oder nach dem 5/8 Loop gelten die Kriterien für halbe Loops.

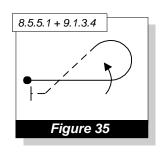
7.15 Familie 7.8.9 - 7.8.16 – Horizontale Super Achten

- 7.15.1(Abb. 33) Diese Figuren haben drei 45 Grad Linien, auf denen Rollen ausgeführt werden können. Sie sind wie Figuren der Familie 7.8.1 7.8.8 zu bewerten, jedoch mit einer zusätzlichen 45 Grad-Linie.
- 7.15.2 Die beiden 3/4 Loops müssen den selben Radius haben, aber wegen der Flugmechanik im Segelkunstflug können sie nicht auf der gleichen Höhe geflogen werden. Die 1/8 Loops im Eingang und Ausgang der Figur müssen einen angemessenen und konstanten Radius haben, brauchen

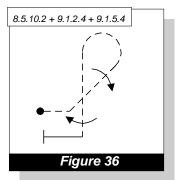

aber weder gleich gross wie die beiden 3/4 Loops zu sein, noch untereinander gleich. Rollen auf den 45 Grad Linien mit Ausnahme von gerissenen oder gestoßenen Rollen müssen zentriert sein. Die Höhen der Eingangs- und Ausgangslinien haben keine Relation zur Höhe der beiden 3/4 Loops.

7.16 Familie 8 - Kombinationen aus Linien, Loops und Rollen

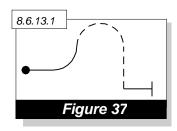
7.16.1 Diese Figuren bestehen aus horizontalen, vertikalen und 45 Grad Linien in Kombination mit verschiedenen Teil-Loops. Die Bewertungskriterien für Linien und Loops gelten uneingeschränkt.


7.17 Familie 8.4. – Humpties

- 7.17.1 Diese Figuren, ob vertikal oder mit 45 Grad Linien, werden als Kombinationen von Linien und Loops bewertet. Keine der Radien der verschiedenen Teil-Loops brauchen gleich zu sein. Die halben Loops der Figuren der Familie 8.4 müssen einen konstanten Radius haben, ab dem Verlassen der vertikalen oder 45 Grad Linie. Das erfordert eine Änderung der Winkelgeschwindigkeit im Halbloop. (Abb. 34)
- 7.17.2 Die Linien aufwärts und abwärts können unterschiedlich lang sein, damit kann die Eingangs- und Ausgangshöhe der Figur verschieden sein. Rollen, ausser gerissenen oder gestoßenen Rollen oder Rollen, die auf ein Trudeln folgen, müssen auf der jeweiligen Linie zentriert sein.

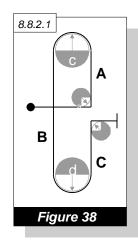

7.18 Familien 8.5.1 - 8.5.8, 8.6.1 - 8.6.8 und 8.7 – Rollenkehren, Überschlagkehren, P- und Q- Loops

7.18.1 (Abb. 35) In diesen Figuren brauchen keine der Teil-Loops den selben Radius zu haben. In den Figurensymbolen gezeichnete Winkel sind als Teil-Loops und nicht als Ecken zu fliegen. Rollen auf vertikalen und 45° Linien, außer gerissenen und gestoßenen Rollen oder Rollen, die auf ein Trudeln folgen, müssen auf der jeweiligen Linie zentriert sein. Werden Rollen auf horizontalen Linien vor oder nach Teil-Loops geflogen, so darf zwischen Loop und Rolle keine Linie gezeigt werden. (siehe Abs. 9.8) Für Rollen im Scheitelpunkt von Poder Q-Loops gelten die Kriterien für ganze Loops. (siehe 7.10.4)

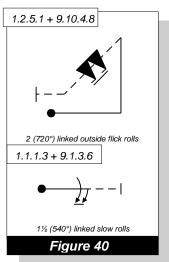

7.19 Familie 8.5.9 - 8.5.16 - "Tropfen"

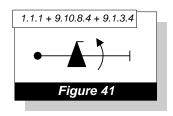
7.19.1 (Abb. 36) Keine der Teil-Loops in diesen Figuren müssen den gleichen Radius haben.Rollen auf den senkrechten und 45 Grad Linien mit Ausnahme von gerissenen und gestoßenen Rollen oder Rollen, die auf ein Trudeln folgen, müssen auf der Linie zentriert sein. Die Winkel in den Figurensymbolen sind als Teil-Loops zu fliegen.

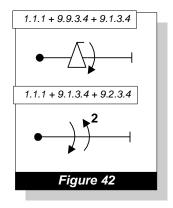
7.20 Familien 8.6.9 - 8.6.16 und 8.10 – Kombinationen aus Loop-Bögen


7.20.1 (Abb 37) Die Radien der als runde Bögen gezeichneten 1/4, 1/2 und 3/4 Loops müssen alle gleich sein und wo die Bögen ineinander übergehen, darf keine Linie zu sehen sein. Eine Linie bedeutet einen Abzug von mindestens zwei (2) Punkten, abhängig von der Länge der Linie. Der als Ecke gezeichnete Teil-Loop soll einen angemessenen Radius haben, der aber nicht gleich groß wie die Radien der anderen Loops sein muß. Für Rollen auf den Eingangs- und Ausgangslinien gelten die Kriterien der Familie 7.2

(halbe Loops mit Rollen). Rollen im Scheitelpunkt der 1/2 oder 3/4 Loop-Elemente sind wie bei Familie 7.4.1 / 7.4.2 (ganze Loops) zu bewerten. (siehe Ziff. 7.10.4)


7.21 Familie 8.8 - Doppelhumpties


- 7.21.1 Diese Figuren bestehen aus drei Senkrechten Linien und zwei 180 Grad Loop-Bögen. (Abb. 38)
- 7.21.2 Aufgrund der sehr unterschiedlichen Geschwindigkeiten braucht keiner der Loop-Bögen gleich groß zu sein (sie müssen aber konstante Radien haben). Ebenso ist nicht gefordert, daß die Linien gleich lang sein müssen. Ansonsten gelten die Kriterien für Humpties (Ziff. 7.17).

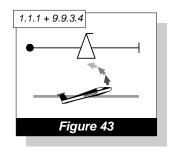


7.22 Familie 9 – Rollen und Trudeln

- 7.22.1 Rollen können auf horizontalen, vertikalen und 45 Grad Linien geflogen werden sowie auf ganzen Loops, zwischen Teil-Loops und Linien und nach einem Trudeln.
- 7.22.2Rollen können 1/4, 1/2, 3/4 oder eine ganze Umdrehung umfassen. Bis zu zwei komplette Umdrehungen sind zulässig. Zusätzlich können Rollen in Kurven integriert sein. (Familie 2 Rollenkreise)
- 7.22.3 Für alle Rollen gelten die gleichen Kriterien: Die Rollrate muß konstant sein und das Flugzeug muß vor, während und nach der Rolle die vorgeschriebene Ebene und Flugrichtung beibehalten.
- 7.22.4 Mehrfache Rollen können fortlaufend, getrennt oder gegenläufig geflogen werden.
 - a) Bei mehrfachen Rollen mit fortlaufender Drehung sind die Spitzen der Symbole durch eine Linie verbunden. Zwischen zwei fortlaufenden Rollen darf keine Pause erkennbar sein. (Abb. 40)
 - b) Getrennte mehrfache Rollen müssen zu verschiedenen Klassen gehören. Die beiden Klassen sind:
 - i) Gesteuerte und Zeitenrollen
 - ii) Gerissene und gestoßene Rollen
 - c) Getrennte mehrfache Rollen werden mit der selben Drehrichtung geflogen, wobei zwischen den Rollen eine kurze Pause erkennbar sein muß. Die Spitzen der Figurensymbole sind nicht verbunden. (Abb. 41)
 - d) Gegenläufige mehrfache Rollen können zur gleichen oder verschiedenen Klassen gehören. Die Spitzen der Symbole zeigen in entgegengesetzte Richtungen. (Abb. 42) Der Pilot ist frei in der Wahl der Drehrichtung für die erste Rolle, muß dann jedoch die zweite Rolle in die Gegenrichtung fliegen. Gegenläufige Rollen sind als ein durchgehendes Manöver auszuführen, die Pause zum Wechseln der Drehrichtung soll minimal sein.
 - e) Auf einer senkrechten Linie kann nach einem Trudelelement eine gesteuerte, gerissene oder gestoßene Rolle geflogen werden. Wenn Trudeln und Rolle kombiniert werden, sind sie immer als getrennte Drehungen zu betrachten. Die beiden Elemente können in die gleiche Richtung oder gegenläufig gedreht werden, was durch die Richtung der Symbole auf den Formblättern B und C anzuzeigen ist. Die Kombination darf nicht mehr als zwei ganze

Umdrehungen ergeben (z.B. auf eineinhalb Trudelumdrehungen darf höchstens eine halbe Rolle folgen).

7.23 Familien 9.1 und 9.13 - Gesteuerte Rollen

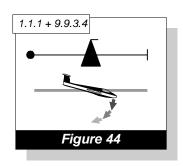

- 7.23.1 Der Punktabzug für Variationen der Rollrate ist ein (1) Punkt pro Änderung. Jede Unterbrechung, die den Eindruck erweckt, es handele sich um eine Zeitenrolle, führt zur Wertung Hard Zero (HZ) für die Figur. Die Rolle muß so exakt und "knackig" wie möglich beendet werden. Eine allmähliche Verringerung der Rollrate am Ende ist gleichbedeutend mit einer Veränderung der Rollrate und führt folglich zum Abzug von einem (1) Punkt.
- 7.23.2 Das Flugzeug muß genau in der vorgesehenen Fluglage stoppen und nicht die gewünschte Querlage überschießen und dann kurz zurückrollen. Für dieses "Nachwackeln" (auch als "Schneppern" bezeichnet) ist je nach Schwere des Fehlers, ein halber (0,5) bis ein (1,0) Punkt abzuziehen.

7.24 Familien 9.2 - 9.8 - Zeitenrollen

- 7.24.1 Diese Rollen werden nach den gleichen Kriterien bewertet wie gesteuerte Rollen, die Drehung wird jedoch entsprechend der vorgeschriebenen Anzahl Zeiten (2, 4 oder 8) gestoppt. Die Rollrate und der Rhythmus der Stops muß während der gesamten Figur konstant bleiben, wobei das Flugzeug die vorgeschriebene Ebene und Flugrichtung beibehält. Die Pausen müssen gleich lang und die Rollwinkel zwischen den Stops korrekt sein: d.h. 180 Grad, 90 Grad oder 45 Grad. Jede Pause muß deutlich erkennbar sein und es ist besonders wichtig, daß der Wettbewerber in größerer Höhe oder bei eingeschränkter Sicht lange genug anhält um die Pausen für die Punktrichter eindeutig erkennbar zu machen. Ist einer der Stops nicht zu erkennen, muß die Figur mit Hard Zero (HZ) bewertet werden.
- 7.24.2 Jedes "Nachwackeln" bei den Stops wird mit einem Abzug von einem halben (0,5) bis einem (1) Punkt belegt, je nach Schwere des Fehlers.

7.25 Familie 9.9 - Gerissene Rollen

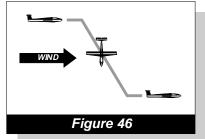
- 7.25.1 Rollen mit abgerissener Strömung d.h. gerissene und gestoßene Rollen sind eine besondere Herausforderung für den Punktrichter. Das hat vorrangig zwei Gründe:
 - 1. Das Abreissverhalten der verschiedenen Flugzeugtypen variiert stark wegen unterschiedlicher Flügelprofile, Flügelgrundrisse und Spannweiten.
 - 2. In korrekt geflogenen gerissenen und gestoßenen Rollen verändert sich die Fluglage sehr rasch. Der Punktrichter muß besonders sorgfältig die Reihenfolge der Ereignisse beobachten, insbesondere zu Beginn der Figur.
- 7.25.2Der Punktrichter muß zwei Dinge sehen, um das korrekte Einleiten einer gerissenen oder gestoßenen Rolle festzustellen: Das Flugzeug muß einen kritischen Anstellwinkel einnehmen durch plötzliche Veränderung der Längsneigung und die Autorotation muß mit Seitenruder eingeleitet werden. Kann der Punktrichter nicht beide Ereignisse erkennen, ist die Figur mit Perception Zero (PZ) zu werten. Die Änderung der Längsneigung kann sehr unterschiedlich sein, je nach der Grundfigur in der die gerissene Rolle geflogen wird. Wenn z.B. die gerissene Rolle im Scheitelpunkt eines Loops geflogen wird, hat das Flugzeug bereits einen relativ grossen Anstellwinkel und die Längslageänderung wird erheblich kleiner sein als unter anderen Bedingungen.
- 7.25.3 Beim Einleiten der gerissenen Rolle muß sich die Flugzeugnase aus Sicht des Piloten eindeutig und unverkennbar in Richtung des Cockpits bewegen (Abb. 43). Das bringt das Flugzeug in einen kritischen Anstellwinkel und ist am besten erkennbar, wenn die Rumpfspitze oder das Heck des Segelflugzeugs verfolgt werden. Bewegt sich die Flugzeugnase nicht in die richtige Richtung ist die Figur mit Hard Zero (HZ) zu benoten. Entweder gleichzeitig oder kurz darauf muß



eine Drehung um die Hochachse erfolgen, die zum einseitigen Strömungsabriss führt und damit die Autorotation in die selbe Richtung einleitet.

- 7.25.4Während der gesamten Rolle muß die Rollbewegung primär mit dem Seitenruder gesteuert werden und die Autorotation muß erkennbar bleiben. Das kann am besten durch Beobachtung der kegelförmigen Bewegung der Rumpflängsachse überprüft werden, wobei die grösste Auslenkung am Heck sichtbar ist. Diese Bewegung darf nicht mit der spiralförmigen Flugbahn einer engen Fassrolle verwechselt werden, bei welcher der Schwerpunkt eine Spiralbahn beschreibt. Die Drehrate und die Auslenkung relativ zur Flugbahn ist vom Flugzeugtyp abhängig, aber die Rollrate ist in jedem Fall deutlich schneller als wenn nur mit dem Querruder gerollt wird. Dies ist ein wichtiger Hinweis für den Punktrichter, daß die Rolle wirklich mit abgerissener Strömung geflogen wurde. Zum Ausleiten der gerissenen (oder gestoßenen) Rolle muß die Autorotation nach Erreichen der vorgeschriebenen Drehung so rasch stoppen, wie sie begonnen hat und das Flugzeug sofort die der Grundfigur entsprechende Fluglage einnehmen. Abzüge für Winkelfehler beim Ausleiten der Figur sind in der üblichen Weise mit einer Note Abzug pro fünf Grad Abweichung zu belegen.
- 7.25.5 Bei gerissenen oder gestoßenen Rollen kommt es immer darauf an zu erkennen, daß der Wettbewerber die Rolle nicht "steuert", sondern die gesamte Rotation durch einseitigen Strömungsabriss verursacht wird. Ein guter Anhaltspunkt ist jedenfalls die Auslenkung der Flugzeuglängsachse unmittelbar vor Beginn der Rollbewegung und die oben angesprochene kegelförmige Bewegung der Längsachse. Wenn bei einem Segelflugzeug die Strömung nicht abgerissen ist, beschreibt es eine typische Spirale, ähnlich einer engen Fassrolle. Nichtsdestoweniger, ist im Zweifelsfall stets zugunsten des Wettbewerbers zu entscheiden. Ist sich der Punktrichter aber sicher, daß kein Strömungsabriss erfolgte, hat er die Figur mit Perception Zero (PZ) zu werten. Wird die Autorotation vorzeitig beendet und die restliche Drehung gesteuert, ist für je fünf (5) Grad gesteuerte Drehung ein (1) Punkt abzuziehen. Wurden mehr als 45 Grad der Rolle gesteuert, ist die Figur mit Null (0.0) zu werten. Das gleiche gilt, wenn die Rolle überdreht wurde. Für je fünf (5) Grad Überdrehen ist ein (1) Punkt abzuziehen.

7.26 Familie 9.10 - Gestoßene Rollen


7.26.1 Alle Kriterien die im vorigen Abschnitt für die gerissene Rolle angesprochen wurden, gelten auch für die gestoßene Rolle, wobei selbstverständlich bei der gestoßenen Rolle der Strömungsabriss bei negativem Anstellwinkel erfolgen muß. Daher muß sich beim Einleiten der gestoßenen Rolle die Flugzeugnase vom Cockpit weg bewegen. (Abb. 44) Auf diesen negativen Anstellwinkel ist besonderes Augenmerk zu richten, denn das ist der einzige erkennbare Unterschied zwischen der gerissenen und der gestoßenen Rolle. Auch hier gilt, wie bei der gerissenen Rolle, wenn sich die Flugzeugnase nicht in die richtige Richtung bewegt, muß die Figur mit Hard Zero (HZ) benotet werden.

7.26.2. Der Punktrichter sollte sich aber bewusst sein, daß nahezu sämtliche Kunstflug-Segelflugzeuge gewölbte Flügelprofile haben und die Höhenruderwirkung beim "Stoßen" geringer ist als beim "Reißen". Deshalb sehen gestoßene Rolle meistens anders aus als Gerissene. Generell erscheint der Strömungsabriss beim Stoßen träger als beim Reißen und gestoßene Rollen sind nicht so "knackig" wie gerissene. In jedem Fall ist aber im Zweifel zugunsten des Piloten zu entscheiden und der Punktrichter sollte die Rollrate als zusätzliches Kriterium nehmen, um zu entscheiden, ob die Rolle wirklich "ausgehängt" hat.

7.27 Familien 9.11 und 9.12 - Trudeln

- 7.27.1 Trudelelemente können mit allen Figuren aus den Familien 1 und 8 kombiniert werden, die mit einer senkrechten Linie abwärts beginnen. Nach dem Trudeln kann eine Rolle auf der selben Linie geflogen werden.
- 7.27.2 Jedes Trudeln beginnt aus dem Horizontalflug. Um zu trudeln muß auf einer deutlich erkennbaren horizontalen Linie ein Strömungsabriss nahe der Mindestgeschwindigkeit herbeigeführt werden. Sobald die Strömung abreißt, kippt das Segelflugzeug ab und die Autorotation soll nahezu gleichzeitig um Längs- und Hochachse einsetzen. Ist der Beginn der Autorotation um die Hochachse erkennbar verzögert gegenüber der Autorotation um die Längsachse, war die Geschwindigkeit beim Einleiten zu hoch, zum Einleiten wurde "gerissen" oder "gestoßen" und die Figur ist mit Perception Zero (PZ) zu werten.
- 7.27.3 Während des Einleitens und beim Trudeln unterliegt das Flugzeug dem Windeinfluss. (Abb. 46) Wird das Trudeln mit Rückenwind eingeleitet, kann die resultierende Flugbahn den Eindruck erwecken, daß das Trudeln "erzwungen" wurde. Dieser Windeinfluss ist bei der Bewertung außer acht zu lassen.

- 7.27.4 Nach Beendigung der vorgesehenen Drehung muß das
 Flugzeug genau in der vorgeschriebenen Flugrichtung stoppen und eine Fluglage senkrecht abwärts mit den Flächen
 parallel zum Horizont einnehmen. Von da an gelten die Bewertungskriterien für die Grundfigur,
 innerhalb der das Trudeln ausgeführt wurde. Folgt dem Trudeln eine Rolle, soll eine kurze
 Pause zwischen Trudeln und Rolle erkennbar sein (wie bei getrennten Rollen). Da es vor dem
 Trudeln keine senkrechte Linie gibt, sind weder das Trudeln noch eine Kombination aus Trudeln
 und Rolle auf der Linie zu zentrieren.
- 7.27.5 Endet die Autorotation vorzeitig, so daß die verbleibende Drehung mit Querruder nachgesteuert wird, ist für je fünf (5) Grad fehlende Drehung ein (1) Punkt abzuziehen. Das gleiche gilt für Überdrehen und Zurücksteuern.
- 7.27.6 Die Längsneigung des Flugzeugs beim Trudeln spielt für die Bewertung keine Rolle, da manche Flugzeuge nahezu senkrecht und andere relativ flach trudeln. Ebenso wenig ist die Drehgeschwindigkeit ein Faktor bei der Bewertung des Trudelns. Wenn die Strömung offensichtlich nicht abgerissen ist, kann das Flugzeug selbstverständlich nicht trudeln und eine Perception Zero (PZ) ist zu geben.
- 7.27.7 Die wichtigsten Bewertungskriterien beim Trudeln sind demnach:
 - a) Ein deutlich erkennbarer Strömungsabriss im Horizontalflug.
 - b) Autorotation mit abgerissener Strömung.
 - c) Stoppen der Drehung in der vorgeschriebenen Richtung.
 - d) Senkrechte Fluglage mit Flächen waagerecht nach Beenden der Drehung.

8 Raumeinteilung

(Siehe Bewertungsregeln SKWO, Abschnitt 7.1.3)

- 8.1.1 Die Raumeinteilung wird durch die Punktrichter benotet.
- 8.1.2 Raumeinteilung bezieht sich auf die Platzierung der Figuren in Relation zur X- und Y-Achse des Kunstflugraums. Weiterhin bezieht sich die Raumeinteilung auf die Platzierung der jeweiligen Figur in der optimalen Distanz zu den Punktrichtern unter Berücksichtigung der Höhe und des Charakters der jeweiligen Figur. Und die Raumeinteilung bezieht sich auch auf die symmetrische Platzierung des ganzen Programms relativ zur Quer- (Y) Achse des Kunstflugraums.

8.2 Optimale Platzierung der Figuren

- 8.2.1 Präzises Fliegen ist am besten zu beurteilen, wenn die Sichtlinie der Punktrichter weder zu hoch noch zu flach über dem Horizont ist. Andererseits verliert ein Segelflugzeug während des Programms ständig an Höhe. Praktisch bedeutet das für den Piloten, daß er nicht zu dicht an der Vorderkante des Kunstflugraums fliegen soll, solange er noch hoch ist und nicht zu weit entfernt von den Punktrichtern gegen Ende des Programms in niedriger Höhe.
- 8.2.2 Dabei ist auch der Charakter der jeweiligen Figur zu beachten. Zum Beispiel:
 - a) Ein Loop oder eine 45 Grad Linie können nicht genau bewertet werden, wenn sie zu nahe bei den Punktrichtern geflogen werden.
 - b) Ein Rollenkreis in niedriger Höhe von den Punktrichtern weg geflogen ist weit schwieriger zu bewerten als wenn er auf die Punktrichter zu geflogen wird.

8.3 Symmetrie der Vorführung

8.3.1 Ein Programm sollte so geflogen werden, daß es symmetrisch zur Quer-(Y)-Achse des Kunstflugraums positioniert ist. Besonders unter Windeinfluss muß sich der Pilot bemühen, sein Programm so einzuteilen, daß es symmetrisch zur Querachse bleibt.

9 Harmonie

(Siehe Bewertungsregeln SKWO, Abschnitt 7.1.4)

- 9.1.1 Die Harmonie eines Segelkunstflugprogramms wird nach den folgenden Kriterien bewertet:
 - a) Energiehaushalt,
 - b) angemessener und gleichmäßiger Rhythmus,
 - c) Figurentrennung,
 - c) Figurenabstände,
 - d) Richtungskontrolle
- 9.1.2 Der Grundgedanke hinter der Harmonienote ist es, diejenigen Aspekte eines Segelkunstflugprogramms zu bewerten, die weder von den Noten für die Einzelfiguren noch von der Raumnote erfasst werden.
- 9.1.3 Übermäßig hartes Fliegen mit hoher G-Belastung ist schlechtes Energiemanagement und verstößt gegen das Prinzip der Harmonie. Zeigt ein Pilot durchgängig in seinem Programm übermäßig harte Abfangbögen oder unnötig lange vertikale oder 45 Grad geneigte Linien, sollte die Harmonienote um zwei (2,0) Punkte reduziert werden.
- 9.1.4 Die Eingangsfahrt für die nachfolgende Figur soll am Ausgang der vorhergehenden erreicht sein (SKWO, Ziff. 7.1.4.1). Muß ein Wettbewerber die horizontalen Linien zwischen den Figuren benutzen, um Fahrt aufzuholen oder abzubauen, bedeutet das schlechtes Energiemanagement und muß sich in einer reduzierten Harmonienote niederschlagen.
- 9.1.5 Wird der Flugbahnwinkel auf einer Eingangs- oder Ausgangslinie verändert, ist das ebenfalls ein Abzug von einem halben (0,5) Punkt pro Ereignis.
- 9.1.6 Die Harmonienote wird nicht herabgesetzt, wenn der Wettbewerber wegen unharmonischen Aufbaus eines Pflichtprogramms zwischen den Figuren Fahrt aufholen oder abbauen muß (SKWO, Ziff. 7.1.4.1.a)).
- 9.1.7 Ein weiterer wichtiger Faktor der Harmonie ist der angemessene und gleichmäßige Rhythmus eines Programms. Der Wettbewerber sollte seine Figuren klar trennen und gleichmäßige Figurenabstände einhalten. Die Linien zwischen den Figuren sollten einen konstanten Flugbahnwinkel haben und von gleicher Länge sein, wobei unterschiedliche Geschwindigkeiten zu berücksichtigen sind. Unnötig lange Linien oder Linien mit stark unterschiedlicher Länge, sofern das nicht nötig ist, um starken Wind auszugleichen (siehe SKWO, Ziff. 7.1.4.1. b)), sollten um je einen halben (0,5) Punkt pro Ereignis abgewertet werden.

- 9.1.8 Eine Programmunterbrechung muß zu einer Reduzierung der Harmonienote um zwei (2) Punkte führen. Sollte der Punktrichter bei der Programmunterbrechung überstimmt werden, wird die Harmonienote trotzdem nicht nachträglich angepasst.
- 9.1.9 Gute Richtungskontrolle ist von überragender Bedeutung für die Harmonie. Wenn es eine Richtungsabweichung grösser als 45 Grad in einer Figur oder im Ausgang aus der Figur gibt, und der Wettbewerber muß die Richtung in der Horizontalen korrigieren, sollte die Harmonienote um einen Punkt (1,0) pro Ereignis reduziert werden. Erfolgt die Korrektur in der Vertikalen, hat das keinen Einfluss auf die Harmonienote, selbst wenn die Figur wegen der Richtungsabweichung mit Soft Zero (0,0) bewertet wird.
- 9.1.10 Jede in die falsche Richtung geflogene Figur verringert die Harmonienote um einen (1) Punkt. Wird der Punktrichter bei dieser HZ überstimmt, ist die Harmonienote trotzdem nicht nachträglich anzupassen.
- 9.1.11 Hard Zeros, die wegen irgendwelcher anderer Fehler gegeben werden (ausgelassene Figur, falsche Figur, Figur hinter den Punktrichtern begonnen etc.), haben keinen Einfluss auf die Harmonienote.